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This paper presents a novel methodology for predicting key aircraft design parameters using
Gaussian Process Regressions (GPR) applied to a comprehensive, open-source database of over
400 aircraft and 200 engines. The database, made freely available through the Future Aircraft
Sizing Tool (FAST), enables aircraft designers to apply detailed historical data in early-stage
conceptual design and provides full visibility into the data underlying the regressions—unlike
traditional regression models, where the training data and model fit are often not disclosed.
The non-parametric GPR models developed in this work allow for flexible input configurations,
significantly improving the accuracy of predicting critical parameters, such as Operating Empty
Weight (OEW) and engine weight, compared to established regressions from the literature.
By incorporating a broader range of inputs—including maximum takeoff weight, payload,
range, and sea level static thrust—these models reduce prediction errors and provide tighter
error distributions, leading to more reliable estimates during early design phases. This paper
outlines a methodology for adapting conventional aircraft data to explore hybrid-electric and
fully electric aircraft designs, ensuring that historical data can be leveraged effectively for novel
propulsion systems. Additionally, the flexibility of the GPR framework allows users to create
their own regressions and update predictions as new data becomes available, making it a useful
tool for researchers working with their own datasets.

Nomenclature

APM = Airport Planning Manual
ARD = Automatic Relevance Determination
CAA = Civil Aviation Authority (United Kingdom)
EASA = European Union Aviation Safety Agency
EIS = Entry-into-Service
EPFD = Electrified Powertrain Flight Demonstration
FAA = Federal Aviation Administration
FAST = Future Aircraft Sizing Tool
GPR/GPM = Gaussian Process Regression/Model
IDEAS = Integrated Design of Environmentally-friendly Aerospace Systems (Laboratory)
MTOW = Maximum Takeoff Weight
OEW = Operating Empty Weight
TCDS = Type Certificate Data Sheet(s)

I. Introduction
Conceptual aircraft aimed at sustainably advancing the aviation industry currently lack the formalized design

processes that traditional aircraft benefit from. Typically, modern aircraft design begins with an analytical approach
based on historical regressions, drawing from extensive aircraft databases. Major aerospace companies, such as Boeing
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or Airbus, maintain their own proprietary databases. While popular aircraft design methods, like those by Roskam [1]
and Raymer [2], are widely used, they primarily focus on conventionally (i.e. tube-and-wing, Jet-A powered) aircraft.
To bridge the gap between current and future designs, "transition" models are expected to emerge, linking today’s
aircraft evolution to more advanced, sustainable designs of the future.

The transition designs will likely be modified and improved versions of modern aircraft. Electrification, technological
efficiency improvements, and sustainable drop-in fuels will be integrated into the industry before large scale alternative
airframe or propulsion systems are commonplace [3] . Sigmoid curves (also referred to as ”S-curves") are often used to
describe the improvement of technology over time, starting slowly then rapidly progressing before seeing diminishing
improvements towards the end of a lifecycle. Technologically, it is expected that transition aircraft designs will push the
limits of current component maturation until breakthrough technology defines an entirely new Sigmoid curve to follow.

Traditionally, conceptual aircraft designs are developed based on historical data, as outlined by renowned authors
such as Roskam, Raymer, and Jenkinson [1, 2, 4]. This historical data, applied through regression methods, is used
to estimate key performance metrics, such as weight and range, in the early stages of aircraft design. This approach
continues until a design layout is finalized, enabling more detailed analyses. However, conventional regression models
are limited when it comes to novel aircraft concepts, such as those employing fully or partially electric (i.e., electrified)
propulsion systems, or those designed to use alternative fuels like hydrogen. The absence of historical data for such
unconventional designs presents a significant challenge in accurately predicting their performance.

Despite historical data only being available for conventional aircraft, recent studies have shown that by revisiting
definitions of weight ratios, historical data can provide insights into feasibility of alternative aircraft as well [5]. Thus,
even for novel systems, historical data still holds value in conceptual design. By developing more granular regressions,
it is possible to integrate emerging trends—such as new weight and performance metrics—into conventional methods,
thereby retaining the decades of experience embedded in historical data. This work provides the foundation for such an
approach by leveraging historical regressions and adapting them for novel aircraft concepts, especially those which
bridge the gap between contemporary and advanced designs.

This paper presents the foundation for this approach, demonstrating how historical data can be used in a more
flexible and granular manner. By developing Gaussian Process Regression (GPR) models, this work enables the use of
historical data to predict design parameters for electrified and alternative fuel aircraft while preserving the benefits of
traditional regression-based methods. Importantly, these models are integrated into the Future Aircraft Sizing Tool
(FAST) [6, 7], which provides open-source access to both the historical database and the regression tools, allowing
designers to apply these methods to their own data or models.

Several publicly available databases offer information on aircraft and engine specifications, with Janes’ All the
World’s Aircraft [8] being the most widely recognized. This database is updated annually, but it requires manual data
entry for analysis, which can be time-consuming. Similarly, Roux’s database handbooks on turbofan and turboprop
engines [9, 10] provide detailed engine information, but they also require manual entry and are often focused on specific
subsets of aircraft. Table 1 summarizes the key existing aircraft and engine databases and their limitations.

Table 1 Examples of existing aircraft/engine databases and their limitations.

Author Year Database Type Limitations

Roux [9, 10] 2007/2011 Turbofan/Turboprop Book Format/Date
Janes [8] 2023 Aircraft Book Accessibility
FAA [11] 2023 Aircraft Excel Scale

Eurocontrol [12] 2024 Aircraft Website Scale
Jenkinson, Simpkin, Rhodes [13] 2001 Aircraft/Engine Book/Website Scale

Meier [14] 2023 Aircraft/Engine Website Incomplete

To address these limitations, this work compiles a new historical aircraft and engine database, drawing from Type
Certificate Data Sheets (TCDS) published by the FAA, EASA, and other aviation authorities, supplemented with
information in existing databases. This database, originally developed for FAST, is an open-source resource and designed
to be collaboratively updated, and it is intended to predict key aircraft parameters in the conceptual design phase. FAST
uses GPR models to predict unknown parameters based on fundamental aircraft requirements, such as range and payload
weight, along with designer-specified constraints, such as thrust-to-weight-ratio or wing loading.
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This work aims to provide up-to-date, publicly available data on conventional aircraft that can be easily accessed,
manipulated, and analyzed by aircraft designers of all experience levels. The methodology for creating and tuning
the regressions used in FAST is fully documented, and the models are designed to be adaptable for novel aircraft
designs. The results show that the GPR-based regressions offer improved accuracy over historical baselines and are
well-suited for hybrid electric aircraft design. Section II discusses the methodology for this work. Methods describe
data collection, regression procedures, and hyperparameter tuning. Section III connects the regressions to the FAST
tool itself, showing where they are used for conceptual aircraft design. Section IV shows the performance of FAST
regressions against historical references. These example regressions include OEW, engine weights, and fuselage length.
After the concluding remarks, a short appendix in Section V.A describes how to run a basic regression in FAST.

II. Methodology
This section describes in detail how data was collected for use in the database, in addition to any post processing

that was performed on the data. Additionally, this section describes the methodology used to develop a probabilistic
regression to utilize the data in aircraft sizing. It goes on to explain tuning methods which are essential to the functionality
of the regressions. Finally, this section explains how the data is used within the FAST tool to assist in quick conceptual
aircraft design, with the goal of improving conventional regressions on common parameter estimates in the design
process.

A. Data Collection
Historical data serves as a foundational element for forecasting future trends in aircraft and engine key performance

parameters (KPPs). To ensure reliable projections, a substantial database was required. Many existing databases lack
proper source citations and seldom offer the level of specificity needed for the intended analysis. For example, while a
database might list general technical specifications for the Airbus A380-800, it often overlooks distinctions between
variants, such as the -841, -842, and -861, which use different engines. A key contribution of this database is the
recording of each variant as a unique vehicle, accounting for performance variations resulting from different engine
options and configurations. This level of granularity distinguishes the database from other publicly available resources,
making it particularly valuable for detailed performance analysis and conceptual design.

External databases vary in their formality and completeness. For instance, the Jet Engine Specification Database
is an informally documented, "blog-style" database that provides ample parameters but lacks comprehensive data
collection [14]. A more formal source is the database by Jenkinson, Simpkin, and Rhodes [13], used in their aircraft
design textbook, Civil Jet Aircraft Design [4]. Although well-documented, this database focuses on fewer categories
comprised of Aircraft, Engines, Airports, Atmosphere and Airspeeds.

The Integrated Design of Environmentally-friendly Aircraft Systems (IDEAS) Laboratory at the University of
Michigan aimed to make a densely populated database without compromising the number of recorded parameters [6].
As a result, a custom database of commercial aircraft was developed, consisting of over 400 aircraft and over 200
turbofan engines, along with a select number of turbojet engines. The aircraft database interacts with the engine
database to describe a complete vehicle. Each aircraft in the database is represented by 87 parameters, and each engine
by 54 parameters. To ensure accuracy, only parameters directly gathered from reliable sources were recorded into the
collection. A post-processing script was created and runs in MATLAB to extract any information required from the
raw data. Examples of calculated parameters include Operating Empty Weight to Maximum Takeoff Weight ratio
(OEW/MTOW), Thrust-to-Weight ratio, Taper Ratio, and Lift-to-Drag ratio, among others.

Data was primarily collected from TCDS published online by aviation authorities such as the FAA, EASA, CAA, and
others. Additional information was sourced from aircraft manufacturer materials and airport planning manuals. However,
fragmented version histories and proprietary information often resulted in an incomplete database. Inconsistencies
arose from aircraft variants, certification sheet disparities, and inconsistent conventions. Despite these challenges, a
standardized format was adhered to during data collection.

As an example, the data collection process for the Boeing 737-200 began by locating FAA TCDS A16WE on
the FAA’s website. A portion of this TCDS is seen in Fig. 1. This document lists every certified variant of the 737,
including all versions of the aircraft family and certified engine options. The TCDS commonly reports certification
year, aircraft weights, maximum operating passenger limits, altitudes, velocities, and thrusts for each engine option. If
the data sheet guides a user to notes or flight manuals, those sources are also investigated, such as the payload range
diagram shown in Fig. 2. A diagram like this one can be found in a airport planning manual (APM) or “flight manual",
which may also contain information about nuanced differences between aircraft. For example, an APM could include
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the weight differences between two versions of the same aircraft, one with passenger entertainment centers installed and
one without. These manuals often show how the payload-range diagrams change as different engines are installed on the
same airframe, or have information on the aircraft geometry (e.g. wing area, aircraft binding box dimensions, etc.) if
CAD files are not available on a manufacturer’s website.

Fig. 1 FAA TCDS A16WE’s section describing the 737-200 [15].

Fig. 2 Boeing Document D6-58325-6, pp. 86: Payload/Range Diagram for a 737-100 with PW JT9D-9
Engines [16].
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Once all available aircraft parameters were recorded, the corresponding engines were investigated. For example, the
737 family has used many engines over the years. As shown in Fig. 1, the -200 alone has used nine different engines,
and the 737 family consists of 13 commercial variants (-100 through -900 and the MAX -7 through -10). Every engine
that has been used by the 737 family was documented in the database.

Engine TCDS are typically more comprehensive than aircraft TCDS. Most engine parameters are described in the
data sheets. The secondary source of engine information used was Roux’s Turbofan and Turbojet Engines Database
Handbook [9, 10], where information such as fuel consumption, turbine entry temperature, and air mass flow rate can be
found. In some cases, additional data was drawn from sources such as a 2008 gas turbine engine data table published in
Aviation Weekly [17].

In cases where reliable data could not be found for a specific parameter, no value was recorded. However, thanks to
the large sample size, missing entries did not significantly impact the overall analysis. This large collection of aircraft
and engine data allowed for robust analysis, even when some entries were incomplete.

B. Regression Overview
FAST utilizes historical regressions during aircraft sizing. GPRs were chosen for their adaptability to new data

and dimensional flexibility. When using historical data for aircraft design, the number of known point performance
metrics may vary between designs. Regressions without predetermined inputs are desirable, because they allow for
input flexibility and can make use of all available data. For example, if an aircraft is being designed to carry 150
passengers over 2,000 nautical miles, a good initial guess for the aircraft’s MTOW will expedite the weight iteration
process. If little additional information is available, the regression can use just these two parameters (i.e., payload and
range requirements) to predict an initial MTOW. However, if more information—such as wing loading—is available,
including these inputs will allow the regression to capture more nuanced trends, leading to a more accurate prediction
and faster convergence during aircraft sizing. This is illustrated in Fig. 3, where a notional aircraft, designed to carry
150 passengers 6,000 km, is shown to converge on an MTOW in less iterations with a more reasonable initial guess.
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Fig. 3 Notional aircraft MTOW convergence using different initial guesses.

The regression employs a non-parametric GPR, which offers an advantage over a parametric GPR by not assuming a
predetermined functional output form. This flexibility allows the regression to dynamically learn relationships between
aircraft parameters, with the data and the covariance kernel determining the shape of the output space [18]. This
capability is especially valuable in aircraft design, where relationships between design parameters are often nonlinear
and influenced by multiple factors. Although both parametric and non-parametric GPRs scale computationally with
O(𝑛3), the term 𝑛 represents different quantities in each case. In parametric GPR, 𝑛 refers to the number of functional
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coefficients in the output form, while in non-parametric GPR, 𝑛 refers to the number of data points used for prediction.
Given that the database contains several hundred aircraft, the computational cost of using a non-parametric GPR remains
manageable.

Non-parametric GPR models the relationship between inputs and outputs by assuming that the data points and any
subsets of them are jointly distributed according to a multivariate Gaussian distribution. In FAST, GPR is trained on a
set of known input-output pairs from an aircraft database. This process encodes the relationships between the variables,
allowing GPR to make probabilistic predictions for unknown outputs. Since the database contains over 100 variables
for each aircraft, FAST first selects the relevant inputs and outputs for each specific regression task. It then creates a
targeted subset of variables from the larger set, enabling the regression to focus on the desired relationships.

Non-parametric GPR assumes that the predicted output, given the inputs, follows a Gaussian distribution. As a result,
the regression provides a Gaussian distribution for the output, defined by a mean and standard deviation. Equations 1
and 2 present these predicted values. Importantly, GPR does not assume that the input variables themselves follow a
normal distribution.

𝜇 = 𝜇0 + 𝐾 (𝑥, 𝑥∗)
(
𝐾 (𝑥, 𝑥) + 𝜎2 × 𝐼

)−1 ( 𝑦̄ − 𝜇0)𝑇 (1)

Σ = 𝐾 (𝑥, 𝑥) − 𝐾 (𝑥, 𝑥∗)
(
𝐾 (𝑥, 𝑥) + 𝜎2 × 𝐼

)−1
𝐾 (𝑥, 𝑥∗)𝑇 (2)

where:
• 𝜇0 is the prior mean. It is a default assumption for an output variable if the data proves unhelpful.
• 𝑥 is the set of input variable data for all aircraft used in the regression.
• 𝑥∗ is the set of input variable data corresponding to the unknown output value. It is the question being asked to the

regression.
• 𝜎2 is the so-called “noise variance." It represents a distrust in the data collected. Analogously, in a physical

system this variable captures the effect of noise introduced by a sensor or measuring equipment.
• 𝐼 is an identity matrix with size 𝑁 × 𝑁 , where 𝑁 is the number of aircraft datasets used in the regression.
• 𝑦̄ is the set of (known) output variable data for all the aircraft used in the regression.
• 𝐾 (𝑥1, 𝑥2) is the covariance kernel. It is a measure of similarity between two sets of data (aircraft in this case), 𝑥1

and 𝑥2. This function and its tuning will be discussed in Section II.C.

C. Covariance Kernel
While non-parametric GPR does not assume a specific functional form for the output, it does require a functional

form for the covariance kernel. A covariance kernel is a measure of similarity between two data points, in this case
aircraft, with respect to each parameter that defines them. The squared exponential kernel (also called the radial basis
function) is widely regarded as a good choice for several reasons. A good kernel should effectively capture appropriate
similarity between data points and be computationally efficient [19]. Moreover, the kernel should exhibit decaying
similarity as data points points become sufficiently different [18, 20].

The squared exponential kernel satisfies these requirements and is adaptable to higher-dimensional spaces while
maintaining a relatively low level of computational complexity. The 𝐷−dimensional form is presented in Equation 3.

𝐾 (𝒙, 𝒙∗) = 𝜏 exp

(
−𝛾

𝐷∑︁
𝑖=1

(𝑥𝑖 − 𝑥∗𝑖 )2

ℓ2
𝑖

)
(3)

where:
• 𝒙 and 𝒙∗ are example data points. Each is an 𝐷−dimensional vector.
• 𝜏 is the output scale factor. It determines the absolute value of the impact that two “similar" data points will have

on the posterior distribution.
• 𝛾 is the input scale factor. It governs the sensitivity of the kernel to input similarities.
• ℓ𝑖 is the parameter length scale. This takes unique values depending on the parameter being compared. It serves

to normalize between parameters so they can be directly summed.
The squared exponential kernel fulfills all requirements for a good choice of covariance kernel. It compares all

dimensions of two data points, normalizing each dimension such that all contribute equally. It decays to little contribution
as two data points become dissimilar. In effect, this kernel will not modify a prior belief about the regression output if
there does not exist data to claim that the prior belief is flawed. It scales computationally with O(𝐷), and in practice the
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dimensionality of a regression is limited to 𝐷 ∼ 10 as there are rarely aircraft design parameters with strong relationships
to more than 10 other parameters without redundancy.

D. Parameter and Hyperparameter Tuning
Thus far, many regression parameters and kernel hyperparameters have been introduced and defined. This section

presents studies and discussions on tuning these parameters within the context of regression models. In FAST, the
tuning methods are often parameterized based on the available data from the aircraft database, as the regressions are
dynamic. Rather than optimizing parameters for a specific regression, tuning studies aim to minimize average errors
across multiple regressions.

1. Prior Mean
The prior mean, shown by 𝜇0 in Equation 1, represents a prior belief about the output of the regression, which may

be adjusted depending on the data’s relevance to the desired output parameter. This prior value can be based on an
educated guess, a lower-fidelity numerical model, or a physics-based model. In FAST, since the regression does not have
prior knowledge of which dataset corresponds to the output parameter, the prior mean is tuned to the mean of the desired
output parameter (as shown in Equation 4). This approach provides the regression with a sense of scale, adjusting it
according to the available data without requiring additional models. FAST does allow for an alternative prior to be input
into a regression should a user decide they would like to overwrite the average value provided by the database.

𝜇0 =
1
𝑁

𝑁∑︁
𝑖=1

𝑦̄𝑖 (4)

where 𝑦̄ is defined as it was in Equation 1, the set of output parameter values from all aircraft use in the regression.

2. Length Scales and Output Scale Factor
The length scale hyperparameter, denoted as ℓ in Equation 3, determines how similar two aircraft parameter values

must be for the regression to treat them as “alike." This hyperparameter is highly sensitive to the specific aircraft
parameter it applies to, and a distinct length scale is required for each dimension being compared. For example, when
predicting operational empty weight (OEW) as a function of maximum takeoff weight (MTOW) and entry-into-service
(EIS) year, the regression evaluates the MTOW, EIS, and OEW of aircraft in the database to estimate an appropriate
OEW for the given MTOW and EIS. While comparisons between aircraft within 10,000 pounds of the target MTOW
may be reasonable, comparisons to aircraft that entered service within 10,000 years of the target EIS would clearly be
inappropriate.

There are two primary approaches to tuning the length scale parameter(s). One option is to perform empirical
testing or optimization to determine the values that minimize error using a set of validation data. Alternatively, the
parameters can be learned using automatic relevance determination (ARD). ARD requires that all available parameters
in the database be used for every output, and the length scales are learned by tuning the input variables. Inputs with
little relevance to the output (i.e., those showing weak correlation with the output) are naturally assigned near-zero
contributions [21].

Since length scales are not universal across different regressions, optimization would require fixing the inputs and
outputs of specific regressions, which undermines the flexibility of a dynamic regression model. While ARD could
dynamically learn the length scales, this approach would be computationally expensive, negating the benefit of a quick
regression call within the aircraft sizing code. However, the two desirable functions that ARD performs, parameter
relevance and tuning, can be approximated as follows:

1) When performing a regression, it is assumed that not all input parameters are relevant. Either a select few are
chosen based on known physical relationships between aircraft parameters, or a small subset of parameters is
used and assumed to be relevant. The former method is employed for regressions with predefined outputs, such as
OEW or propulsion system weight. The latter approach is used when the output is set dynamically based on user
interaction. When a user inputs information describing an aircraft, these values are used to create a regression
that predicts any missing data the user has not provided. In this case, required information such as payload and
range is supplemented with optional data to predict the remaining inputs necessary for the sizing iteration.

2) Regarding the tuning of parameters deemed relevant, the goal is not to find the perfect value that minimizes error
for a specific regression. Instead, the tuning value should be parameterized based on the data and tailored to the
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Table 2 Regression inputs and outputs for a 𝛾 tuning parameter study, shown in Fig. 4

Output Inputs

Aircraft Length MTOW
OEW MTOW, Range

Engine Weight Fraction MTOW, Thrust
MTOW Payload, Range, EIS

Lift-to-drag Ratio Payload, Range, MTOW
Wing Loading MTOW, EIS

specific input variable. Using the standard deviation of the input variable provides a length scale for the kernel
that is both appropriate in scale and intuitive. If two aircraft have input parameter values within one standard
deviation of each other, it is reasonable to consider them “similar," as their difference is essentially negligible
during the large data processing that the regressions employ.

Equation 5 illustrates how the length scale hyperparameters are tuned.

ℓ2
𝑖 = var(𝑥𝑖) (5)

Since all inputs are normalized by their respective length scales, the kernel output will reflect changes on a consistent
order of magnitude. To scale this to the appropriate output variable, an additional tuning parameter, denoted by 𝜏 in
Equation 3, is required. The exponential term determines the similarity between two data points, while the output scale
factor 𝜏 dictates the extent to which this similarity influences the adjustments made to the prior belief. Similar to the
length scales, 𝜏 is tuned to one standard deviation of the output variable, which provides an appropriate scale for the
kernel to modify the prior with. This is shown in Equation 6.

𝜏 =
√︁

var( 𝑦̄) (6)

3. Noise Variance
In a physical system, the noise in recorded data may be defined through testing sensors. However, in a simulated

system, noise variance is treated as an additional hyperparameter and thus requires tuning as well. Despite being
collected from reputable sources, it is ill-advised to assign a small universal value to the noise variance. In addition, the
noise should be scaled depending on the regression’s output parameter. During data collection, disagreements between
sources for parameter values were not uncommon. For example, the range reported in a TCDS may differ from that in
an Aircraft Planning Manual. TCDS figures typically reflect values at their extremes (i.e. do-not-exceed speeds or
weights), whereas Aircraft Planning Manuals offer detailed diagrams that present multiple specific ranges under various
conditions. Typically, these differences were on the order of about 5 to 10 percent. Therefore, it is assumed that the
standard deviation of the data noise is 7.5% of the mean of the data for the desired output parameter.

4. Input Scale Factor
The input scale factor 𝛾 is commonly accepted be on the order of 𝛾 = 0.5. This parameter is meant to be constant for

any regression regardless of the input and output spaces. This was tested empirically by considering multiple regressions
which are commonly used in aircraft design. The aircraft database was divided into two sets of data, 90% being used to
train the model while 10% was reserved to test the regression output. The data was assigned to validation and training
sets randomly. Six common regressions, summarized in Table 2, were then performed using the test data’s inputs. This
was repeated as the input scale factor 𝛾 was varied. Then, a new 90-10% split was taken and the regressions were
repeated (100 times) for each 𝛾. All of the errors for each value of 𝛾 were averaged for each regression. Additionally,
the average of the six regression’s error was taken at each gamma to confirm if there exists an optimum value of 𝛾 such
that the average error across all regressions is minimized. The results from this study are shown in Fig. 4, where it
can be shown that for values of 0.2 < 𝛾 < 5 the resultant average error across all regressions appears to be somewhat
constant. A slight optimum was found at 𝛾 = 2.27, which is the value assumed to universally minimize the error output
for any regression in FAST.
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Fig. 4 Example regression errors as function of the hyperparameter 𝛾

E. Database Usage for Alternative Energy Aircraft
Although FAST’s database consists solely of conventionally powered aircraft, the tool is built to design, analyze,

and evaluate advanced aircraft with novel propulsion systems, including electrified aircraft propulsion [7]. Accordingly,
when using conventional aircraft data to draw conclusions about hybrid-electric or fully electric concepts, modifications
must be made to account for biases inherent in conventional regressions. For example, when predicting aircraft OEW,
conventional data introduces biases about airframe shape, fuel tank locations and weights, material choices, and other
factors. The following methodology, summarized here and described in detail by Arnson et al. [22], outlines an approach
for modifying the inputs and outputs of a conventional OEW regression for use in conceptual design of electrified
architectures.

1) Use existing conventional data to define a new parameter, referred to in this paper as “airframe weight.” This
parameter is defined in Equation 7 as:

𝑊Airframe = 𝑊MTO −𝑊Fuel −𝑊Payload −𝑊Crew −𝑊Engines −𝑊Other

= 𝑊OEW −𝑊Engines
(7)

For unconventional designs, additional terms may be added to account for components such as fuel cells, batteries,
or electric motors.

2) Perform a regression on𝑊Airframe using input parameters that are not specific to conventional aircraft. Examples
include maximum takeoff weight, aircraft thrust-to-weight ratio, aircraft range, payload weight, etc.

3) If necessary, perform post-processing to the regression output. For example, if liquid hydrogen is intended to
replace kerosene, modify airframe weight by subtracting conventional tank weight and adding a hydrogen tank
weight. (Since FAST’s database does not include component weights, a regression on conventional architecture
fuel tanks can be found in Raymer (1989) [23], while estimates for a hydrogen fuel tank weight can be found
using fuel weight and an assumed gravimetric efficiency).

4) Build back up an OEW from the resultant airframe weight and estimates for any components relevant to the
desired architecture. This includes gas turbines, fuel cells, and electric motors. Conventional OEW buildups
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include only power and thrust sources, not energy sources. However, some sources may include batteries as part
of an OEW buildup.

FAST uses this procedure for all aircraft sizing. Conventional architectures have their propulsive and structural OEW
components split as well. This allows for easy handling in the OEW prediction in FAST. The user-intput architecture
matrices, described in detail in Mokotoff et al. [7], tell FAST which propulsion models to run. These could be gas
turbine, electric motor, fuel cell, etc. The weight estimations for these components are output if the model is called,
otherwise their weight is kept as its initial value (zero) and it does not impact the sizing process.

III. Regressions Used in FAST
FAST utilizes several regressions to initialize an aircraft, as well as during the sizing process. Figure 5 outlines

FAST’s workflow, and highlights the code blocks which call regressions in green, and can be further distinguished with
an “R” character. The initialization block calls regressions to set values for unspecified variables which FAST requires
to run. For example, if a user does not set an initial MTOW guess, FAST will use required inputs, such as payload
weight and range, to predict these unknowns. The initialization regressions are not updated as the aircraft sizes. In
contrast, the regressions in the weight buildup, which predict “airframe weight” (see Sec II.E) and engine weight. These
regressions are run inside the sizing iteration, updating their predictions depending on the current iteration’s MTOW,
thrust, etc. The regression inputs and outputs are described in detail as follows:

Initialization: FAST parses user specified values from the following list of parameters:
• Cruise Speed (if unspecified in mission profile)
• Cruise Altitude (if unspecified in mission profile)
• MTOW (initial guess)
• Wing loading
• Lift-to-drag ratio (turbofans only; insufficient turboprop data)
• Thrust-to-weight ratio (turbofans) / Power-to-weight (turboprops)
• SLS thrust (turbofans) / SLS power (turboprops)

Then the known values, in combination with required inputs, payload weight and range, are used to predict the
unspecified values.
Airframe Weight: Turbofan airframe weight is predicted using wing area, MTOW, SLS thrust, and entry-to-service
year. There is insufficient data to perform a probabilistic regression for turboprops, instead a linear fit to airframe
weight as a function of MTOW is fit using the sparse data.
Engine Weight: Predicted using aircraft thrust or power at takeoff, depending on whether the aircraft uses turbofan
or turboprop engines.

FAST is an actively developed tool, and is constantly being improved. As more data is collected, the regressions FAST
uses are updated. At present, FAST does not use input/output variables identical to those presented in Sec. IV for its
regressions. As part of its development, the input/output variables listed above change as improvements are made. This
section described the variables as they currently exist in FAST.

IV. Results

A. Historical Database
The historical database is available online, free of charge, in several formats. Large Excel spreadsheets are available

for use with statistical software, in addition to MATLAB data structures which contain the same information. These
data structures, which include both engine and aircraft data, are formatted to integrate seamlessly with FAST, allowing
designers to create their own regressions. The database [6] can be accessed at https://github.com/ideas-um/FAST.

B. Regressions
The FAST tool is capable of creating over 1029 unique regressions using the information in the database. Of these,

the most useful regressions utilize aircraft performance metrics, such as design range and payload, to predict values
that are not intuitive or known early in the conceptual design. This section provides three examples (OEW, engine
weight, and aircraft length) which are used within FAST during the aircraft sizing process. The regression outputs from
FAST are compared to reference regressions from contemporary literature, and their errors are evaluated. The data
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Fig. 5 FAST’s overarching workflow, from Mokotoff et al. [7], with regression-using blocks highlighted in green
and marked with “R.”

used for the studies presented in this section come from commercial aircraft utilizing turbofan engines only, and is
sourced directly from FAST’s database. Appendix V.A provides a comprehensive tutorial for recreating the regressions
presented in this section.

Similar to the study presented in Section II.D.4, each regression is evaluated using 90% of the data for training and
10% for testing. The data is then randomized to produce a new set of training and test data, where a new regression is
created and evaluated, and this process is repeated 100 times. The results from these tests are shown as cyan circles in
Figs. 6- 14, and is referred to as “FAST 1" in the following section.

In addition to the 90/10 splits, another FAST regression is performed using 100% of the data for both training and
testing. This approach mirrors the potential overlap between training and test data in reference regressions, where the
original data used to create these models is not explicitly known. As a result, some of the data in FAST’s database may
overlap with the data used in the creation of these reference regressions. To ensure a fair comparison, the results from
this 100% data regression are also included and are shown as black circles in Figs. 6- 14, and is referred to as “FAST 2"
in the following section. It is of note that because the selection of training versus validation data in this study is random,
results may vary slightly if a different random number generation seed is used. For those interested in reproducing these
results exactly, the seeds are documented and available upon request.

1. Operating Empty Weight Regression
OEW is an important parameter in conceptual aircraft design and its estimation as a function of other aircraft

parameters is essential in FAST during the sizing process. Canonical aircraft design literature offers data-driven
regressions to predict OEW such as Raymer [24], Jenkinson [25], and Roskam [26], as shown in Equations 8, 9, and
10 respectively. These reference regressions primarily predict OEW based on MTOW, and in one case, the number of
engines.

In contrast, the FAST regression captures more nuanced fluctuations in OEW by incorporating additional parameters
such as MTOW, payload, range, SLS thrust, and the number of engines. By allowing for more inputs, the FAST
regression identifies trends in OEW that are not visible when only considering MTOW and the number of engines.

The outputs from the five regressions were compared to the actual OEW values in the database. The results of FAST,
Raymer, Jenkinson, and Roskam are shown in Figs. 6, 7, 8, and 9 respectively, with a summary of errors provided in
Table 3. The mean error indicates a tendency to over or underestimate a parameter value in general. Most regressions
have mean errors close to zero, showing low bias overall. Raymer (-8.104%) has the highest negative bias, meaning it
tends to underestimate. Median errors are also close to zero for most regressions, suggesting that the typical error is
minimal. Raymer (-8.453%) again shows the most negative deviation from zero, with Roskam being the second most
deviated, indicating some bias in these regressions. The standard deviation measures the variability of errors around
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Fig. 6 FAST OEW regression outputs: predicted vs. actual and error vs. actual

the mean, with smaller values indicating less error deviation. Lower standard deviations are preferred as they indicate
more predictable errors. All regressions show moderate to high variability, with Jenkinson having the highest standard
deviation (18.71%), indicating less consistent predictions. FAST 2 has the lowest (7.653%), suggesting relatively stable
predictions. Most regressions have skewness values close to zero, indicating a roughly symmetric error distribution.
Raymer has slight negative skew, indicating a few larger positive errors, while FAST 1 and FAST 2 show slight positive
skew. The kurtosis values suggest moderate to heavy-tailed distributions. FAST 2 shows the highest kurtosis (6.229),
indicating a higher likelihood of extreme outliers. Roskam’s kurtosis is closest to 3, suggesting a nearly normal-tailed
distribution with fewer extreme outliers. Among the reference regressions, the Jenkinson regression [25] yields the
lowest mean error. This is likely because it uses an average OEW-to-MTOW fraction. This averaging naturally reduces
the mean error as more data is included. However, using an average OEW-to-MTOW fraction does not necessarily
result in the lowest standard deviation or the lowest kurtosis error distribution compared to the other regressions.

Both of FAST’s regressions outperform the reference regressions in terms of standard deviation and skewness of the
error distribution. FAST 1, which represents predictions for aircraft not stored in the database, has a slightly negative
bias of -0.2741%, but achieves approximately 40% lower standard deviation than the next best regression. Additionally,
FAST 1 has the smallest difference between the mean and median of the error distribution, indicating the least skewed
distribution among the regressions.

FAST 2 outperforms FAST 1 because it uses more training data and is predicting parameters for aircraft it is already
familiar with. It has means and medians closer to zero with the smallest standard deviation of all the regressions.

𝑊empty = 1.02𝑊0.0833
takeoff (8)

𝑊empty =

{
0.55𝑊Takeoff 𝑁Engines = 2
0.47𝑊Takeoff 𝑁Engines > 2

(9)

𝑊empty = 10−0.0802𝑊−0.0369
Takeoff (10)
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Fig. 7 Raymer [24] OEW regression outputs: predicted vs. actual and error vs. actual
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Fig. 8 Jenkinson [25] OEW regression outputs: predicted vs. actual and error vs. actual
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Fig. 9 Roskam [26] OEW regression outputs: predicted vs. actual and error vs. actual

Table 3 Error metric summary for FAST and reference regressions on OEW.

Error Metric Mean [%] Median [%] Standard Deviation [%] Skewness Kurtosis

FAST 1 -0.2741 -0.3064 5.047 -0.8503 9.656
FAST 2 0.1072 -0.0260 2.398 0.7471 6.915

Raymer [24] -8.104 -8.453 8.331 0.6310 4.370
Jenkinson [25] -3.887 × 10−4 0.9278 8.798 0.1359 4.572
Roskam [26] 0.2523 -1.176 9.551 0.7269 3.964

2. Engine Weight Regression
As seen in Eq. 7, conventional engine weight is necessary to predict when estimating OEW for an alternative energy

aircraft. In this section, the FAST engine weight regressions are compared to those seen in the canonical literature.
Regressions from Raymer [27], Jenkinson [4] , and Svoboda [28] are shown in Equations 11, 12, and 13 respectively.
The engine weight regressions for FAST, Raymer, Jenkinson, and Svoboda are shown in in Figs. 10, 11, 12, and 13
respectively. The error summary can be seen seen in Tab. 4. FAST regressions have low positive mean errors, indicating
minimal bias in prediction, whereas Raymer and Jenkinson have significant negative means (-36.96% and -26.23%,
respectively), showing substantial underestimation. The median is close to the mean for each model, reinforcing the
general bias trends, with Raymer and Jenkinson having large negative medians. All regressions show moderate to
high variability, with Jenkinson having the highest standard deviation (18.71%), indicating less consistent predictions.
FAST 2 has the lowest (7.653%), suggesting relatively stable predictions. Most regressions have skewness close to
zero, indicating a roughly symmetric error distribution. Raymer has slight negative skew, meaning a few larger positive
errors, while FAST 1 and FAST 2 have slight positive skew. FAST 2 shows the highest kurtosis value indicating a heavy
tailed distribution with some extreme outliers. As compared to other regressions, the large kurtosis and lower standard
deviation of the FAST regressions suggests that generally, FAST will predict better with lower errors, however when it
does make a mistake, the error is likely to be higher than that of other regressions.
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Fig. 10 FAST OEW regression outputs: predicted vs. actual and error vs. actual

𝑊Engine (kg) = 14.7𝑇Takeoff (kN)1.1𝑒−0.045𝐵𝑃𝑅 (11)

𝑊Engine (kg) = (8.7 + 1.14𝐵𝑃𝑅) ∗ 𝑇Takeoff (kN) (12)

𝑊Engine (lbs) = 250 + 0.175𝑇Takeoff (lbf) (13)

Table 4 Error metric summary for FAST and reference regressions on engine weight.

Error Metric Mean [%] Median [%] Standard Deviation [%] Skewness Kurtosis

FAST 1 0.66120 0.6006 9.185 0.2807 5.371
FAST 2 0.7404 0.5805 7.653 0.5393 6.229

Raymer [27] -36.96 -36.00 10.24 -0.5207 3.215
Jenkinson [4] -26.23 -25.13 18.71 -0.0547 2.667
Svoboda [28] -7.150 -6.539 11.64 -0.1715 2.623

3. Fuselage Length Regression
Since FAST can generate thousands of different regressions, it has the ability to unveil relationships between various

aircraft parameters. One application of this is FAST’s visualization feature, which requires an accurate prediction of
total aircraft length. A regression to predict aircraft length based on MTOW, range, payload, and wing area is shown in
Fig. 14. This section does not include comparisons to historical references as it was not found in those references. The
fuselage length regression is an example of a new regression that FAST can create based on data already collected in the
FAST database.
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Fig. 11 Raymer [27] engine weight regression outputs: predicted vs. actual and error vs. actual
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Fig. 12 Jenkinson [4] engine weight regression outputs: predicted vs. actual and error vs. actual
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Fig. 13 Svoboda [28] engine weight regression outputs: predicted vs. actual and error vs. actual

One notable outlier in the dataset is the Bombardier Challenger 300, which consistently shows high errors in
both training and test datasets. This is likely because it is the lightest aircraft in the database with a recorded length.
The regression erroneously assumes that this aircraft must have a higher length since all the other aircraft are longer.
Additional data on lighter aircraft, such as business jets, would likely resolve this issue by providing better representation
across different weight categories.

Despite this outlier, the error metrics shown in Table 5 indicate that the predicted aircraft lengths, presented in Fig.
14, have error distributions similar to those observed in the OEW, shown in Figs. 6- 9, and engine weight regressions,
shown in Figs. 10 - 13. Both FAST regressions have low mean errors (0.4938% for FAST 1 and 0.2555% for FAST 2),
indicating minimal bias. The median values are close to zero, further indicating minimal bias in the central tendency of
errors. FAST 2 has a lower standard deviation (5.167%) compared to FAST 1 (6.791%), suggesting more consistent
error predictions. Both regressions show positive skew, with FAST 1 being slightly more skewed (0.5759), indicating
occasional larger negative errors. High kurtosis is shown in both regressions, particularly FAST 1 (7.607), indicating a
greater likelihood of outliers.

Table 5 Error metric summary for FAST on aircraft length.

Error Metric Mean [%] Median [%] Standard Deviation [%] Skewness Kurtosis

FAST 1 0.4938 0.02595 6.791 0.5759 7.607
FAST 2 0.2555 0.03376 5.167 0.2669 4.213

V. Conclusions and Future Work
This paper presents a novel approach to predicting key aircraft design parameters by leveraging Gaussian Process

Regressions applied to a large, open-source historical database of aircraft and engine specifications. This database,
comprising over 400 aircraft and 200 engines, is made freely available through the Future Aircraft Sizing Tool (FAST),
offering the aviation design community an accessible, valuable resource for conceptual aircraft design.
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Fig. 14 FAST aircraft length regression outputs: predicted vs. actual and error vs. actual. Outlier (Challenger
300) shown in red.

The research demonstrates that the GPR models, integrated with FAST’s database, provide significant improvements
over reference regressions from canonical literature. These models, which incorporate a broader range of input
parameters—such as MTOW, payload, range, and SLS thrust—enable more accurate predictions of critical parameters
like OEW and engine weight. The results show that FAST’s regression models not only reduce prediction errors but
also deliver tighter error distributions and smaller standard deviations compared to existing methods, providing aircraft
designers with more reliable estimates early in the conceptual design phase.

A key contribution of this work is the flexibility of FAST’s non-parametric GPR framework, which allows for
dynamic regression generation without predefined input constraints. This capability enables aircraft designers to
explore a wide range of design configurations with precision, demonstrating the tool’s adaptability across different
aircraft and engine architectures. Additionally, this paper introduced a methodology to adapt conventional data for use
in hybrid-electric and fully electric aircraft designs. By modifying conventional regressions, this approach ensures
that historical data can still be leveraged to predict parameters for novel propulsion systems, enabling the design of
sustainable, electrified aircraft concepts.

The development of the database and regression tools is part of an ongoing effort to continually refine and expand
the FAST platform. Future work will focus on incorporating additional aircraft and engine data as they become available,
and further improving the accuracy of the regression models as new user-contributed data enhances the database.
Moreover, the flexibility of FAST allows it to be adapted for various aircraft configurations and propulsion technologies,
including the integration of alternative fuels and hybrid-electric systems. As the tool evolves, it is expected to provide
even more robust capabilities for the conceptual design of next-generation aircraft.

Appendix

A. FAST Regression Tutorial
Figure 15 shows a very simple example of a user specified regression call in FAST. This example illustrates a

prediction for OEW (kg) based on a known MTOW (kg) and aircraft range (m). FAST aircraft are stored in a data
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structure, so each parameter on lines 2-4 are the paths through the structure to the location of the desired parameter.
FAST will always treat the last entry of the Input/Output cell array as the output. Input order does not matter so long as
the Target array matches the variable order, shown in line 8. Line 8 declares the input parameter values that are known
by a user, and as mentioned the order must match that of the Input. In this example, since MTOW is declared as the first
input while Range is declared as the second, and MTOW = 50,000 kg and Range = 3,000 km,
Target = [5,000 , 3,000e3] is correct, while
Target = [3,000e3 , 5,000] would be incorrect.

With the variables and their values declared, the next step is to load the FAST database, shown in line 11. The
database stores 6 structures: turbofan aircraft, turbofan engines, turboprop aircraft, turboprop engines, fan reference,
and propeller reference. The latter two mimic the structure of the others such that the format of the data structures can
be explored and the variable paths (lines 2-4 in the example) can be known. The reference structures contain units in
place of the numerical values that are stored in the database, so targets (line 8) can be entered in the correct units. The
engine database contains all engines which are used by the aircraft in the aircraft database. The same information for
each engine is stored within Aircraft.Specs.Propulsion.Engine. The engine databases are included separately
because a user may wish to run a regression on an engine parameter (such as OPR as a function of EIS), and using the
aircraft database would be biased towards engines which are used more frequently amongst different types of aircraft.

With all required input variables initialized, the regression can be run, as shown on line 15. Outputs of the regression
function are the mean and variance of the normal distribution, which the output parameter is assumed to take. In FAST,
the mean is always taken as the value the regression predicts while the variance is used as a measure of confidence the
regression has in its prediction. Two additional inputs, weights and prior, can be included after a target in the regression
call. Both are options to manually tune the regression and are not used in FAST. Weights adds a scaling factor to each
input variable when summed in the covariance matrix as described in Sec. II.D. In this case, replacing line 15 with
[Mu, Sigma2] = RegressionPkg.NLGPR(TurbofanAC, InputOutput, Target, [2 , 1]);

would tell the regression that MTOW is twice as important as range when predicting OEW. Finally, a prior can be set
which overwrites the FAST default of the database average. If a user believed the OEW in this example should be 20,000
kg, but wanted the database to modify that guess using historical data, they would replace line 15 with
[Mu, Sigma2] = RegressionPkg.NLGPR(TurbofanAC, InputOutput, Target, [1 , 1], 20e3);

Finally, the regression is capable of making multiple predictions in a single call. The only change to the inputs would be
in Target and Prior (if Prior was set). Both of the variables would get extended to be multiple rows larger. For example,
if a user wanted to additionally predict the OEW at an MTOW of 40,000 kg and 2,500 km, line 8 would be replaced with
Target = [50e3, 3000e3; 40e3, 2500e3];

whereupon the outputs would be 2 × 1 sized vectors as opposed to scalars that the example yields.

1 % Set Input/Output Variables (Cell array composed of string vectors)
2 InputOutput = {["Specs", "Weight", "MTOW" ],...
3 ["Specs", "Performance", "Range"],...
4 ["Specs", "Weight", "OEW" ]};
5
6 % Set known input space values (double vector)
7 % MTOW Range
8 Target = [50e3, 3000e3];
9

10 % Load database (TurbofanAC variable will be loaded)
11 load('+DatabasePkg/IDEAS_DB.mat')
12
13 % Call the regression, predicting a mean and variance for the distribution
14 % of OEWs at the given Target vector
15 [Mu, Sigma2] = RegressionPkg.NLGPR(TurbofanAC, InputOutput, Target);

Fig. 15 Example single regression call in FAST, formatted using Korn [29].
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